Der Paleocortex

© dasGehirn.info

Der älteste Teil des Großhirns befasst sich mit dem Schnüffeln: Das Riechhirn verarbeitet und diskriminiert Geruchseindrücke. Mit dabei ist der Riechkolben, der an Schmetterlingsfühler erinnert. Zudem ist er anders aufgebaut als der Rest des Cortex.

Scientific support: Dr. Björn Spittau

Published: 23.08.2011

Difficulty: intermediate

Das Wichtigste in Kürze

Der Paleocortex ist als ältester Teil des Großhirns für den Geruchssinn zuständig. Von den Rezeptorzellen in der Nasenschleimhaut laufen die Signale über den Riechkolben zur primären Riechrinde, ohne vorherige Umschaltung im Thalamus. Das unterscheidet den Geruchssinn von allen anderen Sinneseindrücken.

Paleocortex — in einigen Büchern auch Paläocortex geschrieben — nennt sich die Region des Gehirns, die für den Geruchssinn zuständig ist. Der entwicklungsgeschichtliche Begriff „Paleo“ bedeutet „urzeitlich“ und betont damit, dass es sich um den ältesten Teil der Großhirnrinde handelt. Doch das Alter wird nicht gewürdigt – der Neocortex hat den Paleocortex im Laufe der Evolution auf die vordere untere Fläche der beiden Hemisphären verdrängt.

Dennoch: Geruch ist evolutionär betrachtet eine höchst bedeutsame Informationsquelle. Das zeigt sich noch heute, denn der Riechsinn ist etwas Besonderes: Im Gegensatz zu allen anderen Sinneseindrücken gelangen die Geruchsinformationen von der Nase direkt zur Hirnrinde, ohne zuvor im Thalamus umgeschaltet worden zu sein.

Von der Nase ins Gehirn

Steigt uns ein Geruch in die Nase, registrieren die Riechrezeptorzellen der Nasenschleimhaut Geruchsmoleküle. Das ist insofern besonders, dass die olfaktorischen die einzigen sensorischen Neurone bei Säugetieren sind, die direkt an der Körperoberfläche liegen – wenn auch diese spezielle Körperoberfläche tief in der Nase liegt. Sie leiten die Information über ihre Axone weiter und diese Axone – hier spiegelt sich vielleicht ihr entwicklungsgeschichtliches Alter – sind nicht die schnellsten, im Gegenteil: Von allen Nervenfasern sind die Axone der Riechsinneszellen, diese Fila olfactoria, die langsamsten. Doch ob langsam oder nicht, sie bilden den eigentlichen Riechnerv, den Nervus olfactorius. Der zieht zum Riechkolben, dem Bulbus olfactorius – einem vorgeschobenen, flachen und ovalen Teil des Großhirns. Da der die erste Umschaltstation des Riechnervs darstellt, kann man ihn durchaus als dessen Hirnnervenkern betrachten.

Der Riechkolben liegt auf der Siebplatte der vorderen Schädelgrube, so dass sich die Fila olfactoria zunächst durch die vielen kleinen Löcher dieses knöchernen Siebes schlängeln müssen. Dann erst können sie sich zum Nervus olfactorius vereinen. Der bildet im Riechkolben Synapsen mit den Dendriten der Mitralzellen — so benannt, weil ihre Nervenzellkörper aussehen wie kleine Bischofsmützen. Ort der Begegnung – und damit der Umschaltung – sind die Glomeruli. Wie gut ein Lebewesen riechen kann, entscheidet sich hier: Beim Menschen enden die Axone vieler Riechsinneszellen an den Dendriten einer Mitralzelle, die Informationen laufen also konvergent zusammen. Damit sind wir Mikrosmatiker und unser Geruchssinn ist eher mäßig. Beim Hund hingegen, einem Makrosmatiker, erreicht eine Sinneszelle mehrere Mitralzellen; die Geruchssignale werden also großflächig verteilt, die olfaktorische „Auflösung“ ist höher.

Bulbus olfactorius

Riechkolben/Bulbus olfactorius/olfactory bulb

Vorgelagerter Teil des Gehirns, der die Informationen der Riechnerven nach einer ersten Verarbeitung über den Tractus olfactorius zum Riechhirn (Rhinencephalon) leitet.

Recommended articles

Der Weg zur Rinde

Die Axone der Mitralzellen verlassen den Riechkolben als Tractus olfactorius. Betrachtet man das Gehirn von unten, sind diese beiden Tractus mitsamt den Bulbi gut zu erkennen: Sie erinnern fast an zwei Schmetterlingsfühler, die sich von unten in den Stirnlappen einbetten.

Nach drei bis vier Zentimetern teilt sich jeder dieser Fühler, in die Stria olfactoria lateralis und medialis. An dieser Gabelung bilden sie ein Dreieck, das Trigonum olfactorium, eine dünne Lage grauer Substanz. Hier sitzt der Nucleus olfactorius anterior: Er ist Umschaltstation für einige Axone des Tractus olfactorius — nämlich für die, die zum Riechkolben der anderen Gehirnhälfte ziehen. Es bearbeiten also beide Hemisphären stets die Geruchsinformationen aus beiden Nasenhöhlen, links und rechts.

Die meisten Mitralzellenaxone bleiben allerdings in der gleichen Gehirnhälfte. Der größte Teil läuft als lateraler Strang zur Area praepiriformis, die als primäre Riechrinde gilt. Die Rinde dort ist relativ dünn und auf Zellularebene recht einfach gestrickt – darauf kommen wir noch zurück. Andere Fasern ziehen zu den Kernen des Septums und über das Tuberculum olfactorium zu Thalamus und Hypothalamus. Zur Riechrinde wird auch ein Teil der Amygdala gezählt und darüber erreichen olfaktorische Signale das limbische System. Nicht zuletzt sendet die Riechrinde Fasern direkt zum Hippocampus, der die Gerüche im Gedächtnis verankert.

Bei dieser Vernetzung ist es kein Wunder, dass Gerüche vielfältige Wirkungen auslösen können: Bei ekelerregenden Gerüchen überkommt uns der Brechreiz, wenn wir schmackhafte Speisen wittern, läuft uns hingegen das Wasser im Mund zusammen. Wir sprechen davon, einen anderen Menschen nicht „riechen zu können“, aber wenn die Chemie stimmt, erregt uns der Geruch des Partners sexuell.

Amygdala

Amygdala/Corpus amygdaloideum/amygdala

Ein wichtiges Kerngebiet im Temporallappen, welches mit Emotionen in Verbindung gebracht wird: es bewertet den emotionalen Gehalt einer Situation und reagiert besonders auf Bedrohung. In diesem Zusammenhang wird sie auch durch Schmerzreize aktiviert und spielt eine wichtige Rolle in der emotionalen Bewertung sensorischer Reize. Darüber hinaus ist sie an der Verknüpfung von Emotionen mit Erinnerungen, der emotionalen Lernfähigkeit sowie an sozialem Verhalten beteiligt. Die Amygdala – zu Deutsch Mandelkern – wird zum limbischen System gezählt. 

Zellulärer Aufbau

„Allo“ bedeutet „anders“ — der Allocortex ist also Hirnrinde, die anders ist. Im Gegensatz zum Isocortex, der überall aus sechs Schichten aufgebaut ist, besteht der Allocortex – vermutlich – aus nur drei Schichten. Ganz außen liegt die Molekularschicht, die Lamina molecularis: In ihr verzweigen sich die Dendriten der Pyramidenzellen aus der mittleren Schicht, der Pyramidenzellschicht (Lamina pyramidalis). Deren Axone ziehen durch die darunterliegende Lamina multiformis, die Nervenzellen unterschiedlichster Gestalt enthält, ins Großhirnmark. Zwischen Lamina molecularis und Lamina multiformis gibt es demnach nur eine einzige Nervenzellschicht — beim Isocortex sind es vier: abwechselnd zwei Körnerzellschichten und zwei Pyramidenzellschichten.

Die Schichtenanzahl im Allocortex kann allerdings stark variieren. Selbst die Lehrbücher sind sich sehr uneins, wie viele es denn nun normalerweise sind. Einige nennen drei bis fünf, andere sprechen von höchstens vier, wiederum andere beschränken sich auf „meistens drei“. Am Tuberculum olfactorium sind es beim Menschen sogar nur zwei: Dort fehlt teilweise die äußere Molekularschicht.

Allocortex

Allocortex/-/allocortex

Eine stammesgeschichtlich alte Region des Cortex (Großhirnrinde), die im Gegensatz zum Isocortex (auch genannt Neocortex) nicht sechs, sondern weniger Zellschichten aufweist – im Hippocampus zum Beispiel nur drei. Der Allocortex wird unterteilt in Paleo– und Archicortex sowie Periallocortex, der eine Übergangsform zwischen Allocortex und Isocortex darstellt.

No votes have been submitted yet.

Subjects

Author

Scientific support

License Terms

This content is available under the following conditions of use.

BY-NC: Namensnennung, nicht kommerziell

Related press releases